Jumat, 14 Maret 2008

GO TO ABROAD

Hoi...lagi rame2 nya ngomongin kuliah di luar negeri nih.....Apa gara2 Laskar Pelangi jadi best seller itu ya...aH whatever you say lah...yang pasti di MIPA lagi demam go to abroad....bayangin aja dalam sehari ada 2 acara dari jam 11 mpe jam 6 sore....yang isinya ngebahas kuliah ke luar negeri....
a.....pengen(ngaca donk IPmu berapa)...
ah....terserah lah yang pasti di sini ane mw ngasih inpo...inpo tentang salah satu Uiversitas terkenal se Jepang...se Asia malah..... nomor satu gitu loh...
Siapa si yang ga ngerti University of Tokyo.....(ra ngerti ndeso banget...)
Universitas ini yang dikenal dengan nama lain Tokyo Daigaku atau lebih ngetop dengan sebutan Toda....yah kalo di Indonesia UGM jsdi yu djiyem gitu deh....
Universitas Tokyo mempunyai lima kampus di Hongo, Komaba, Kashiwa, Shirokane dan Nakano dan 10 fakultas dengan total sekitar 28.000 mahasiswa, 2.100 di antaranya pelajar asing (jumlah yang besar untuk ukuran Jepang). Meski hampir segala jenis bidang akademis diajarkan di sini, ia paling terkenal akan fakultas hukum dan sastranya. Universitas Tokyo telah menghasilkan banyak politikus Jepang hebat meski kekuatan universitas ini sedang menurun.
Rival-rival Universitas Tokyo adalah Universitas Kyoto sebagai universitas negeri, dan Universitas Waseda dan Universitas Keio dan Universitas Meiji sebagai universitas swasta. Dalam bidang sains, Universitas Kyoto telah menghasilkan lebih banyak ilmuwan yang hebat dan peraih Hadiah Nobel.
Universitas Tokyo didirikan oleh pemerintah Era Meiji pada 1877 dengan menggunakan namanya seperti sekarang setelah penggabungan perguruan-perguruan tinggi negeri dalam bidang kedokteran dan pembelajaran Barat. Ia kemudian dinamakan ulang menjadi Universitas Kekaisaran (帝國大學 Teikoku Daigaku) pada 1886 dan kemudian "Universitas Kekaisaran Tokyo" (東京帝國大學 Tōkyō Teikoku Daigaku) pada 1887, ketika sistem universitas kekaisaran diciptakan. Pada 1947, setelah kekalahan Jepang pada Perang Dunia II, ia kembali bernama Universitas Tokyo.
hup....gitu aja deh inponya da janji neh buru2...biasa tah orang sibuk huehehehe

Selasa, 04 Maret 2008

NEWTON OH NEWTON

Kemunculan Newton dengan teori gravitasinya menjadi dasar yang kuat dalam menciptakan teori ilmiah pembentukan Tata Surya. Dalam artikel ini akan dibahas teori pembentukan Tata Surya yang lahir sesudah era Newton sampai akhir abad ke-19. Perkembangan teori pembentukan Tata Surya sampai dengan tahun 1960 terbagi dalam dua kelompok pemikiran yakni teori monistik yang menyatakan bahwa matahari dan planet berasal dari materi yang sama. Dan yang kedua teori dualistik menyatakan matahari dan bumi berasal dari sumber materi yang berbeda dan terbetuk pada waktu yang berbeda.
Teori Komet Buffon
Tahun 1745, George comte de Buffon (1701-1788) dari Perancis mempostulatkan teori dualistik dan katastrofi yang menyatakan bahwa tabrakan komet dengan permukaan matahari menyebabkan materi matahari terlontar dan membentuk planet pada jarak yang berbeda. Kelemahannya Buffon tidak bisa menjelaskan asal komet. Ia hanya mengasumsikan bahwa komet jauh lebih masif dari kenyataannya.

Teori Nebula Laplace
Ada beberapa teori yang menginspirasi terbentuknya teori Laplace, dimulai dari filsuf Perancis, Renè Descartes (1596-1650) yang percaya bahwa angkasa terisi oleh “fluida alam semesta” dan planet terbentuk dalam pusaran air. Sayangnya teori ini tidak didukung dasar ilmiah.

Seratus tahun kemudian Immanuel Kant (1724-1804) menunjukkan adanya awan gas yang berkontraksi dibawah pengaruh gravitasi sehingga awan tersebut menjadi pipih. Ide ini didasarkan dari teori pusaran Descartes tapi fluidanya berubah menjadi gas. Setelah adanya teleskop, William Herschel (1738-1822) mengamati adanya nebula yang ia asumsikan sebagai kumpulan bintang yang gagal. Tahun 1791, ia melihat bintang tunggal yang dikelilingi halo yang terang. Hal inilah yang memberinya kesimpulan bahwa bintang terbentuk dari nebula dan halo merupakan sisa nebula.

Dari teori-teori ini Pierre Laplace (1749-1827) menyatakan adanya awan gas dan debu yang berputar pelan dan mengalami keruntuhan akibat gravitasi. Pada saat keruntuhan, momentum sudut dipertahankan melalui putaran yang dipercepat sehingga terjadi pemipihan. Selama kontraksi ada materi yang tertinggal kedalam bentuk piringan sementara pusat massa terus berkontraksi. Materi yang terlepas kedalam piringan akan membentuk sejumlah cincin dan materi di dalam cincin akan mengelompok akibat adanya gravitasi. Kondensasi juga terjadi di setiap cincin yang menyebabkan terbentuknya sistem planet. Materi di dalam awan yang runtuh dan memiliki massa dominan akan membentuk matahari.

Namun menurut Clerk Maxwell (1831-1879) letak permasalahan teori ini cincin hanya bisa stabil jika terdiri dari partikel-partikel padat bukannya gas. Menurut Maxwell cincin tidak bisa berkondensasi menjadi planet karena gaya inersianya akan memisahkan bagian dalam dan luar cincin. Seandainya proses pemisahan bisa terlewati, massa cincin masih jauh lebih masif dibanding massa planet yang terbentuk.

Permasalahan lain muncul dari distribusi momentum sudut dimana tidak ada mekanisme tertentu yang bisa menjelaskan bahwa keberadaan materi dalam jumlah kecil, yang membentuk planet, bisa memiliki semua momentum sudutnya. Seharusnya sebagian besar momentum sudut berada di pusat objek. Jika momentum sudut intrinsik dari materi luar bisa membentuk planet, maka kondensasi pusat tidak mungkin runtuh untuk membentuk bintang,

Penyempurnaan Teori Laplace
Tahun 1854, Edouard Roche (1820-1883) mengatakan bahwa awan yang diajukan Laplace dalam teorinya bisa memiliki kondensasi pusat yang tinggi sehingga sebagian besar massa berada dekat spin axis dan memiliki kaitan
yang kecil dengan momentum angular. Tahun 1873, Roche menyempurnakan teori Laplace dengan analisis “Matahari ditambah atmosfer, yang memiliki kondensasi pusat yang tinggi. Model ini berada diluar rentang planet dan mengalami keruntuhan saat mendingin. Dalam model ini atmosfer berkorotasi terhadap matahari. Saat sistem mengalami keruntuhan kecepatan sudut bertambah untuk mempertahankan momentum sudut sementara jarak mengecil. Jika jarak mengecil lebih cepat dari radius efektif atmosfer, maka semua atmosfer diluar jarak akan membentuk cincin.

Keberatan dari James Jeans (1877-1946). Ia menunjukkan dengan distribusi nebula yang diberikan oleh Roche, materi luar akan menjadi renggang sehingga tidak dapat melawan gaya pasang surut terhadap pusat massanya dan kondensasi tidak akan terjadi. Jeans juga mennunjukkan bahwa untuk materi di dalam cincin yang mengalir dari nebula yang runtuh menuju kondensasi membutuhkan kerapatan yang lebih besar dari kerapatan sistem. Hal ini akan menghasilkan massa atmosfer dengan magnitudo mendekati magnitudo di pusat massa, sehingga bisa menyelesaikan permasalahan momentum sudut.

Senin, 03 Maret 2008

PRAKTIKUMKU MINGGU INI

Bagian ini merupakan pengantar ke topik kromatografi lapis tipis. Meskipun anda adalah seorang pemula yang mungkin lebih mengenal kromatografi kertas, penjelasan@tentang kromatografi lapis tipis sama mudahnya dengan kromatografi kertas.
Pelaksanaan kromatografi lapis tipis
Latar Belakang
Kromatografi digunakan untuk memisahkan substansi campuran menjadi komponen-komponennya. Seluruh bentuk kromatografi berkerja berdasarkan prinsip ini.Semua kromatografi memiliki fase diam (dapat berupa padatan, atau kombinasi cairan-padatan) dan fase gerak (berupa cairan atau gas). Fase gerak mengalir melalui fase diam dan membawa komponen-komponen yang terdapat dalam campuran. Komponen-komponen yang berbeda bergerak pada laju yang berbeda. Kita akan membahasnya lebih lanjut.Pelaksaanan kromatografi lapis tipis menggunakan sebuah lapis tipis silika atau alumina yang seragam pada sebuah lempeng gelas atau logam atau plastik yang keras.Jel silika (atau alumina) merupakan fase diam. Fase diam untuk kromatografi lapis tipis seringkali juga mengandung substansi yang mana dapat berpendarflour dalam sinar ultra violet, alasannya akan dibahas selanjutnya. Fase gerak merupakan pelarut atau campuran pelarut yang sesuai.
Kromatogram
Kita akan mulai membahas hal yang sederhana untuk mencoba melihat bagaimana pewarna tertentu dalam kenyataannya merupakan sebuah campuran sederhana dari beberapa pewarna.
Sebuah garis menggunakan pinsil digambar dekat bagian bawah lempengan dan setetes pelarut dari campuran pewarna ditempatkan pada garis itu. Diberikan penandaan pada garis di lempengan untuk menunjukkan posisi awal dari tetesan. Jika ini dilakukan menggunakan tinta, pewarna dari tinta akan bergerak selayaknya kromatogram dibentuk.Ketika bercak dari campuran itu mengering, lempengan ditempatkan dalam sebuah gelas kimia bertutup berisi pelarut dalam jumlah yang tidak terlalu banyak. Perlu diperhatikan bahwa batas pelarut berada di bawah garis dimana posisi bercak berada.Alasan untuk menutup gelas kimia adalah untuk meyakinkan bawah kondisi dalam gelas kimia terjenuhkan oleh uap dari pelarut. Untuk mendapatkan kondisi ini, dalam gelas kimia biasanya ditempatkan beberapa kertas saring yang terbasahi oleh pelarut. Kondisi jenuh dalam gelas kimia dengan uap mencegah penguapan pelarut.Karena pelarut bergerak lambat pada lempengan, komponen-komponen yang berbeda dari campuran pewarna akan bergerak pada kecepatan yang berbeda dan akan tampak sebagai perbedaan bercak warna.
Gambar menunjukkan lempengan setalah pelarut bergerak setengah dari lempengan.Pelarut dapat mencapai sampai pada bagian atas dari lempengan. Ini akan memberikan pemisahan maksimal dari komponen-komponen yang berwarna untuk kombinasi tertentu dari pelarut dan fase diam.
Perhitungan nilai Rf
Jika anda ingin mengetahui bagaimana jumlah perbedaan warna yang telah terbentuk dari campuran, anda dapat berhenti pada bahasan sebelumnya. Namun, sering kali pengukuran diperoleh dari lempengan untuk memudahkan identifikasi senyawa-senyawa yang muncul. Pengukuran ini berdasarkan pada jarak yang ditempuh oleh pelarut dan jarak yang tempuh oleh bercak warna masing-masing.Ketika pelarut mendekati bagian atas lempengan, lempengan dipindahkan dari gelas kimia dan posisi pelarut ditandai dengan sebuah garis, sebelum mengalami proses penguapan.Pengukuran berlangsung sebagai berikut:

Sebagai contoh, jika komponen berwarna merah bergerak dari 1.7 cm dari garis awal, sementara pelarut berjarak 5.0 cm, sehingga nilai Rf untuk komponen berwarna merah menjadi:
Jika anda dapat mengulang percobaan ini pada kondisi yang tepat sama, nilai Rf yang akan diperoleh untuk setiap warna akan selalu sama. Sebagai contoh, nilai Rf untuk warna merah selalu adalah 0.34. Namun, jika terdapat perubahan (suhu, komposisi pelarut dan sebagainya), nilai tersebut akan berubah. Anda harus tetap mengingat teknik ini jika anda ingin mengidentifikasi pewarna yang tertentu. Mari kita lihat bagaimana menggunakan kromatografi lapis tipis untuk menganalisis pada bagian selanjutnya.
Bagaimana halnya jika substansi yang ingin anda analisis tidak berwarna?

Ada dua cara untuk menyelesaikan analisis sampel yang tidak@berwarna.
Menggunakan pendarflour
Mungkin anda masih ingat apa yang telah saya sebutkan bahwa fase diam pada sebuah lempengan lapis tipis seringkali memiliki substansi yang ditambahkan kedalamnya, supaya menghasilkan pendaran flour ketika diberikan sinar ultraviolet (UV). Itu berarti jika anda menyinarkannya dengan sinar UV, akan berpendar.Pendaran ini ditutupi pada posisi dimana bercak pada kromatogram berada, meskipun bercak-bercak itu tidak tampak berwarna jika dilihat dengan mata. Itu berarti bahwa jika anda menyinarkan sinar UV pada lempengan, akan timbul pendaran dari posisi yang berbeda dengan posisi bercak-bercak. Bercak tampak sebagai bidang kecil yang gelap.
Sementara UV tetap disinarkan pada lempengan, anda harus menandai posisi-posisi dari bercak-bercak dengan menggunakan pinsil dan melingkari daerah bercak-bercak itu. Seketika anda mematikan sinar UV, bercak-bercak tersebut tidak tampak kembali.

Penunjukkan bercak secara kimia
Dalam beberapa kasus, dimungkinkan untuk membuat bercak-bercak menjadi tampak dengan jalan mereaksikannya dengan zat kimia sehingga menghasilkan produk yang berwarna. Sebuah contoh yang baik adalah kromatogram yang dihasilkan dari campuran asam amino.Kromatogram dapat dikeringkan dan disemprotkan dengan larutan ninhidrin. Ninhidrin bereaksi dengan asam amino menghasilkan senyawa-senyawa berwarna, umumnya coklat atau ungu.
Dalam metode lain, kromatogram dikeringkan kembali dan kemudian ditempatkan pada wadah bertutup (seperti gelas kimia dengan tutupan gelas arloji) bersama dengan kristal iodium.Uap iodium dalam wadah dapat berekasi dengan bercak pada kromatogram, atau dapat dilekatkan lebih dekat pada bercak daripada lempengan. Substansi yang dianalisis tampak sebagai bercak-bercak kecoklatan.Dalam metode lain, kromatogram dikeringkan kembali dan kemudian ditempatkan pada wadah bertutup (seperti gelas kimia dengan tutupan gelas arloji) bersama dengan kristal iodium.Uap iodium dalam wadah dapat berekasi dengan bercak pada kromatogram, atau dapat dilekatkan lebih dekat pada bercak daripada lempengan. Substansi yang dianalisis tampak sebagai bercak-bercak kecoklatan.
Penggunaan kromatografi lapis tipis untuk mengidentifikasi senyawa-senyawa
Anggaplah anda mempunyai campuran asam amino dan ingin menemukan asam amino-asam amino tertentu yang terkandung didalam campuran tersebut. Untuk sederhananya, mari kira berasumsi bahwa anda mengetahui bahwa campuran hanya mungkin mengandung lima asam amino.Setetes campuran ditempatkan pada garis dasar lempengan lapis tipis dan bercak-bercak kecil yang serupa dari asam amino yang telah diketahui juga ditempatkan pada disamping tetesan yang akan diidentifikasi. Lempengan lalu ditempatkan pada posisi berdiri dalam pelarut yang sesuai dan dibiarkan seperti sebelumnya. Dalam gambar, campuran adalah M dan asam amino yang telah diketahui ditandai 1-5.Bagian kiri gambar menunjukkan lempengan setelah pelarut hampir@mencapai bagian atas dari lempengan. Bercak-bercak masih belum tampak. Gambar kedua menunjukkan apa yang terjadi setelah lempengan disemprotkan ninhidrin.
Tidak diperlukan menghitung nilai Rf karena anda dengan mudah dapat membandingkan bercak-bercak pada campuran dengan bercak dari asam amino yang telah diketahui melalui posisi dan warnanya.Dalam contoh ini, campuran mengandung asam amino 1, 4 dan 5.Bagaimana jika campuran mengandung lebih banyak asam amino daripada asam amino yang digunakan sebagai perbandingan? Ini memungkinkan adanya bercak-bercak dari campuran yang tidak sesuai dengan asam amino yang dijadikan perbandingan itu. Anda sebaiknya mengulangi eksperimen menggunakan asam amino lain sebagai perbandingan.Bagaimana kromatografi lapis tipis berkerja?Fase diam-jel silikaJel silika adalah bentuk dari silikon dioksida (silika). Atom silikon dihubungkan oleh atom oksigen dalam struktur kovalen yang besar. Namun, pada permukaan jel silika, atom silikon berlekatan pada gugus -OH.


Jadi, pada permukaan jel silika terdapat ikatan Si-O-H selain Si-O-Si. Gambar ini menunjukkan bagian kecil dari permukaan silika.
Permukaan jel silika sangat polar dan karenanya gugus -OH dapat membentuk ikatan hidrogen dengan senyawa-senyawa yang sesuai disekitarnya, sebagaimana halnya gaya van der Waals dan atraksi dipol-dipol..
Fase diam lainnya yang biasa digunakan adalah alumina-aluminium oksida. Atom aluminium pada permukaan juga memiliki gugus -OH. Apa yang kita sebutkan tentang jel silika kemudian digunakan serupa untuk alumina.Apa yang memisahkan senyawa-senyawa dalam kromatogram?Ketika pelarut mulai membasahi lempengan, pelarut pertama akan melarutkan senyawa-senyawa dalam bercak yang telah ditempatkan pada garis dasar. Senyawa-senyawa akan cenderung bergerak pada lempengan kromatografi sebagaimana halnya pergerakan pelarut. Bagaimana cepatnya senyawa-senyawa dibawa bergerak ke atas pada lempengan, tergantung pada:
Bagaimana kelarutan senyawa dalam pelarut. Hal ini bergantung pada bagaimana besar atraksi antara molekul-molekul senyawa dengan pelarut.
Bagaimana senyawa melekat pada fase diam, misalnya jel silika. Hal ini tergantung pada bagaimana besar atraksi antara senyawa dengan jel silika.
Anggaplah bercak awal mengandung dua senyawa, yang satu dapat membentuk ikatan hidrogen, dan yang lainnya hanya dapat mengambil@bagian interaksi van der Waals yang lemah.Senyawa yang dapat membentuk ikatan hidrogen akan melekat pada jel silika lebih kuat dibanding senyawa lainnya. Kita mengatakan bahwa senyawa ini terjerap lebih kuat dari senyawa yang lainnya. Penjerapan merupakan pembentukan suatu ikatan dari satu substansi pada permukaan.Penjerapan bersifat tidak permanen, terdapat pergerakan yang tetap dari molekul antara yang terjerap pada permukaan jel silika dan yang kembali pada larutan dalam pelarut.Dengan jelas senyawa hanya dapat bergerak ke atas pada lempengan selama waktu terlarut dalam pelarut. Ketika senyawa dijerap pada jel silika-untuk sementara waktu proses penjerapan berhenti-dimana pelarut bergerak tanpa senyawa. Itu berarti bahwa semakin kuat senyawa dijerap, semakin kurang jarak yang ditempuh ke atas lempengan.Dalam contoh yang sudah kita bahas, senyawa yang dapat membentuk ikatan hidrogen akan menjerap lebih kuat daripada yang tergantung hanya pada interaksi van der Waals, dan karenanya bergerak lebih jauh pada lempengan.Bagaimana jika komponen-komponen dalam campuran dapat membentuk ikatan-ikatan hidrogen?Terdapat perbedaan bahwa ikatan hidrogen pada tingkatan yang sama dan dapat larut dalam pelarut pada tingkatan yang sama pula. Ini tidak hanya merupakan atraksi antara senyawa dengan jel silika. Atraksi antara senyawa dan pelarut juga merupakan hal yang penting-hal ini akan mempengaruhi bagaimana mudahnya senyawa ditarik pada larutan keluar dari permukaan silika.Bagaimanapun, hal ini memungkinkan senyawa-senyawa tidak terpisahkan dengan baik ketika anda membuat kromatogram. Dalam kasus itu, perubahan pelarut dapat membantu dengan baik-termasuk@memungkinkan perubahan pH pelarut.Ini merupakan tingkatan uji coba ? jika satu pelarut atau campuran pelarut tidak berkerja dengan baik, anda mencoba pelarut lainnya. (Berikan tingkatan dimana anda dapat berkerja, seseorang telah berkerja keras untuk anda dan anda hanya menggunakan campuran pelarut yang telah anda berikan dan segala sesuatunya akan berkerja dengan sempurna!)
hUF...tulisan ini saya sampekan di blog hanya sekehdar untuk membagi rasa pusing di kepala yang sudah tak tertahankan...hehehe

ngeCAT rAmbuT

Pewarna rambut yang aman di-komersilkan pada tahun 1909 oleh seorang kimiawan asal Prancis, Eugene Schuller, dengan menggunakan bahan kimia paraphenylenediamine. Pewarna rambut sangat popular saat ini, lebih dari 7% perempuan mewarnai rambut mereka dan tak ketinggalan pula persentasi kaum pria yang mengikuti tren yang sama. Sebenarnya tahukah anda bagaimana pewarna rambut berkerja? Zat warna yang dihasilkan rambut adalah sebuah reaksi seri kimia antara molekul yang terdapat pada rambut dengan pigmen-pigmen yang reaksinya sama dengan peroxide dan ammonia yang dihasilkan
Apa yang disebut dengan "rambut" ?
Rambut pada dasarnya adalah keratin, yaitu sejenis protein yang juga sama ditemukan pada kulit dan kuku. Warna alami pada rambut bergantung pada perbandingan dan jumlah dari 2 jenis protein yang terkandung di dalamnya. Dua jenis protein tersebut bernama Eumelanin dan Phaeomelanin. Eumelanin adalah zat yang berperan pada pewarnaan rambut coklat ke corak hitam sedangkan Phaeomelanin berperan pada pewarnaan rambut keemasan, kuning jahe, dan merah. Ketidakikutsertaan salah satu dari melanin tersebut akan mengakibatkan warna putih atau abu-abu pada rambut.
Pewarnaan Alami
Manusia telah mewarnai rambut mereka sejak ribuan tahun yang lalu dengan menggunakan tumbuhan dan mineral alami. Ada 2 kategori bahan yang digunakan untuk pewarnaan rambut tersebut yaitu :
Yang mengandung pigmen contohnya Inai dan kerak biji kacang kenari
Pemutih alami yang hasil reaksinya mengakibatkan rambut berwarna contohnya cuka (vinegar). Pigmen alami pada umumnya bekerja degan cara menyelaput tangkai rambut dengan warna. Beberapa pewarna alami digunakan dengan cara yang sama seperti shampoo namun tidak membutuhkan waktu yang lama dan kepekatan yang tinggi seperti pada formula sintetis modern. Permasalahannya adalah sulit untuk mendapatkan hasil yang sama persis jika menggunakan bahan alami, ditambah lagi karakteristik beberapa orang yang alergi terhadap ramuan tradisional.
Pewarnaan Rambut Sementara
Rambut berwarna yang bersifat sementara atau permanen pada dasarnya disebabkan simpanan asam yang tercelup ke tangkai rambut bagian luar, atau bisa juga disebabkan karena molekul-molekul pigmen yang terdapat dalam tangkai rambut. Zat yang umum di gunakan pada proses ini adalah hidrogen peroksida, namun hanya dalam jumlah yang sedikit. Dalam beberapa kasus, pigmen warna buatan masuk kedalam tangkai rambut dan membentuk kompleks yang lebih besar di dalam tangkai-nya, . Namun sifat kesementaraan ini akan mudah hilang kita sering membasahi rambut atau keramas dengan shampoo yang tidak di-khususkan untuk rambut yang berwarna. Hal ini terjadi karena pewarna rambut tidak banyak mengandung ammonia yang menyebabkan tangkai rambut bagian atas tidak terbuka selama proses pewarnaan rambut sehingga sebenarnya pewarna rambut yang alami lebih mampu menahan produk pencuci atau shampoo jauh lebih baik.
Bagaimana Kesan Bercahaya Berkerja?
Bahan pemutih biasa digunakan untuk memberikan kesan bercahaya pada rambut. Reaksi pemutih dengan melanin di dalam rambut merupakan reaksi yang bersifat irreversible. Zat pemutih mengoksidasi molekul melanin. Namun, melanin masih tetap dapat ditemukan dalam bentuk hasil oksidasi yang telah berganti warna. Walau telah dioksidasi, warna rambut cenderung bercahaya dengan warna kuning muda, karena warna kuning merupakan warna alami dari zat keratin yaitu struktur protein yang terdapat pada rambut. Selain itu juga pemutih lebih mudah bereaksi dengan pigmen Eumelanin yang pekat dan Phaeomelamin, sehingga beberapa hasil sisa warna yaitu warna keemasan atau merah yang dapat terlihat kembali setelah pencahayaan. Salah satu zat yang digunakan sebagai kesan bercahaya adalah hydrogen peroksida .
Pewarna Rambut Tetap
Bagian luar lapisan dari tangkai rambut di sebut cuticle. Bagian ini harus terbuka sebelum pewarnaan. Sekali cuticle terbuka, reaksi pencelupan dengan bagian dalam rambut dan cortex, akan tersimpan dan mengganti warna baru. Kebanyakan pewarnaan rambut tetap atau permanent menggunakan 2 tahapan proses pewarnaan (biasanya terjadi bersama-sama). Proses yang pertama adalah mengganti warna asli rambut dan proses yang kedua adalah menyimpan warna barunya, dasar prosesnya sama seperti pada proses membuat efek bercahaya pada rambut, kecuali zat pewarna tersebut terikat dengan tangkai rambut.
Ammonia adalah zat kimia yang bersifat basa yang mampu membuka cuticle dan membiarkan pewarna rambut masuk ke dalam bagian cortex rambut. Ammonia juga bereaksi sebagai katalis ketika pewarna rambut permanen masuk bersama-sama dengan peroksida, kemudian peroksida mengganti posisi pigmen pada saat reaksi awal pergantian warna atau “pre-existing” atau disebut juga awal ketetapan warna. Pada saat itu, peroksida menghancurkan ikatan kimia pada rambut, melepaskan sulfur, dan kemudian memberikan karakteristik bau pada pewarna rambut.
Melanin yang telah ter-decolorinasi akan menjadi warna permanen yang baru karena telah membentuk ikatan dengan cortex rambut. Beberapa jenis alkohol serta condisioner juga dapat melakukan degradasi warna pada rambut, untuk condisioner prosesnya adalah penutupan cuticle setelah pewarna masuk kedalam selaput dalam dan kemudian mengikat warna baru.
(dari berbagai sumber)

KROMATOGRAFI KOLOM

Bagian ini menunjukkan bagaimana prinsip yang sama yang digunakan dalam kromatografi lapis tipis yang dapat diterapkan pada skala besar untuk pemisahan campuran dalam kromatografi kolom. Kolom kromatografi seringkali digunakan untuk memurnikan senyawa di laboratorium.(biar pure gitu loh.....)
Pelaksanaan kromatografi kolomKolom
Dalam kromatografi lapis tipis, fase diam adalah lapisan tipis jel silika atau alumina pada sebuah lempengan gelas, logam atau plastik. Kolom kromatografi berkerja berdasarkan skala yang lebih besar menggunakan material terpadatkan pada sebuah kolom gelas vertikal.Berbagai ukuran kolom kromatografi digunakan dan jika kamu mbuka link pada halaman Kimia Organik dari situs Universitas Colorado, kamu bakal nemuin foto bermacam-macam kolom. Dalam laboratorium sekolah, seringkali dengan mudah digunakan buret biasa sebagai kromatografi kolom
Penggunaan kolom
Anggap aja kamu mw misahin 2 senyawa yang berwarna, yaitu kuning dan biru. Warna campuran yang tampak adalah hijau.Kamu akan membuat larutan jenuh dari campuran dengan menggunakan pelarut yang lebih disukai dalam kolom.Firstly, buka aja kran penutup untuk membiarkan pelarut yang sudah berada dalam kolom mengering sehingga material terpadatkan rata pada bagian atas, dan trus tambahkan larutan secara hati-hati dari bagian atas kolom(be careful yah..). Lalu buka kran kembali sehingga campuran berwarna akan diserap pada bagian atas material terpadatkan,
An then.....tambahkan pelarut baru melalui bagian atas kolom, cegah sedapat mungkin jangan sampai merusak material terpadatkan dalam kolom. Lalu buka kran, supaya pelarut dapat mengalir melalui kolom, kumpulkan dalam satu gelas kimia atau labu dibawah kolom. Karena pelarut mengalir kontinyu, so tetap tambahkan pelarut baru dari bagian atas kolom sehingga kolom tidak pernah kering.

Penjelasan tentang apa yang terjadi
Ini mengasumsikan bahwa kamu uadah baca penjelasan tentang apa yang terjadi pada kromatografi lapis tipis. Jika belum, ikuti link awal pada bagian atas halaman dan kembali pada bagian ini dan selanjutnya.Senyawa biru lebih polar daripada senyawa kuning dan memungkinkan mempunyai kemampuan berikatan dengan hidrogen. Kamu dapat mengatakan in hal tersebut karena senyawa biru tidak bergerak secara sangat cepat melalui kolom. Itu berarti bahwa senyawa biru harus dijerap secara kuat pada jel silika atau alumina dibanding dengan senyawa kuning. Karena kurang polar, senyawa kuning menghabiskan waktu dalam pelarut, sehingga keluar dari kolom lebih cepat.Proses pencucian senyawa melalui kolom menggunakan pelarut dikenal sebagai elusi. Pelarut disebut sebagai eluen.Apakah kamu cuma pingin mengumpulkan senyawa biru saja?Sudah waktunya untuk mencuci senyawa biru melalui kecepatan bergeraknya pada waktunya! Namun, ga da aladsan bwt kamu tidak dapat mengganti pelarut selama elusi.Anggaplah kamu menggantikan pelarut yang telah digunakan selama ini dengan pelarut yang lebih polar, setelah seluruh senyawa kuning selesai terkumpulkan. Ini akan mempunyai dua pengaruh, keduanya akan mempercepat senyawa biru melalui kolom.
Pelarut polar akan bersaing untuk mendapatkan ruang pada jel silika atau alumina dengan senyawa biru. Beberapa ruang untuk sementara dipergunakan oleh molekul-molekul pelarut pada permukaan fase diam, tidak menyediakan molekul-molekul biru untuk melekat dan ini akan cenderung menjaga pergerakannya dalam pelarut.
Akan ada atraksi yang lebih besar antara molekul-molekul pelarut polar dan molekul biru yang polar. Kecenderungan ini akan menarik molekul-molekul biru menempel pada fase diam kembali pada larutan.
Pengaruh total yaitu dengan bertambahnya kepolaran pelarut, senyawa biru akan menghabiskan waktu dalam larutan dan karenanya akan bergerak lebih cepat.
Lalu mengapa tidak menggunakan alternatif ini dalam tempat pertama? Jawabannya adalah jika senyawa-senyawa dalam campuran bergerak secara sangat cepat melalui kolom dari awal, anda mungkin tidak akan mendapatkan pemisahan yang baikBagaimana jika campuran yang dimiliki tidak berwarna?Jika kamu akan menggunakan kromatografi kolom untuk memurnikan produk organik, mungkin produk yang diharapkan akan menjadi produk yang tidak berwarna, meskipun satu atau lebih dari pengotor berwarna. Mari kita berasumsi kasus terburuk yaitu segala sesuatunya tidak berwarna.Bagaimana kamu bisa tahu bahwa substansi yang kamu diinginkan telah mencapai bagian bawah kolom?Ini bukan merupakan pekerjaan yang cepat dan mudah! Apa yang akan kamu kumpulin n apa yang keluar dari bawah kolom dalam seluruh rangkaian pipa yang berlabel. Bagaimana besar setiap sampel akan jelas tergantung pada bagaimana besar kolom yaitu-kamu mungkin mengumpulkan 1 cm3 atau 5 cm3 sampel atau apapun itu besarnya yang sesuai.Kamu akan mengambil setetes dari setiap larutan dan membuatnya ke dalam kromatografi lapis tipis. Kamu menempatkan tetesan pada garis dasar bersama dengan setetes senyawa murni dari senyawa yang sementara anda buat. Dengan mengulangi pekerjaan ini, kamu dapat mengidentifikasi sampel yang mana yang dikumpulkan pada bawah kolom yang mengandung produk yang diinginkan dan hanya dibutuhkan.Sekali kamu tahu prosedur ini, kamu dapat menggabungkan seluruh sampel yang yang mengandung produk senyawa murni dan menghilangkan pelarutnya. (Bagaimana kamu memisahkan pelarut dari produk, tidak langsung relevan dengan topik ini dan akan bervariasi dan tergantung pada sifat dasar senyawanya..)

Minggu, 02 Maret 2008

MEREKA BILANG SAYA MONYET...

Ops...inilah sebuah buku yang baru saja saya baca judulnya....(baru baca sebentar)
Yups...membaca buku ini emang perlu banyak persiapan...
Pertama....siapin umur....paling ga kamu uadah 17 taon.....jadi kalo baca buku ini n ada kata2 yang menurut kamu...bahasa planet mana gih,.....kamu fah ga mengerutkan kening lagi.....
Kedua....siapin sisi puitis n romantismu.....sebab ni buku...sastra banget

N lanjut deh, ni komentar pu tentang ntu buku.....Mereka Bilang Saya Monyet..merupakan sebuah kumpulan cerpen karangan Djenar Maesa Ayu....yang pertama.Djenar Maesa Ayu ini adalah putri dari Suman Djaya(ga tw sumandjaya berati ga pernah liat AADC).Dalam novel ini ada beberapa cerita...diantaranya
1.Mereka Bilang Saya Monyet
2.Lintah
3.Melukis Jendela
4.Waktu Nayla
5.Asmoro
6.Wong Asu
7.Menepis Harapan
8.Durian
9.SMS
Dan udah deh kayaknya....hehehe..lupa.
Karena pu baru baca sekilas...halah pu cuma bisa cerita dikit aja....
Dalam buku ini banyak mengisah kan segala sesuatu yang dialami oleh perempuan yang hidup dalam gaya metropolis....Tentang kehidupan malam,tentang seorang anak perempuan yang terlantar karena ortunya sibuk dengan rutinitas sehari-hari,tentang pelecehan dan kekerasan terhadap perempuan,selingkuh,seseorang yang ngalamin gangguan jiwa karena dy terlalu percaya ma mitos.....wuih pokokE komplit....
Kelemahan buku ini menurut pu loh....kata2nya terlalu kasar....
Tapi ga papa deh coba2 baca....coz ni antologi dah 8 kali cetak ulang...diterbitkan dalam bahasa inggris lagi......